Contributions to the chemistry of Mo and W. XVIII.* The structures of the triclinic and orthorhombic modifications of $\mathbf{W O}_{3}$. By F. A. Schröder, Gmelin-Institut für Anorganische Chemie der Max-Planck-Gesellschaft, D-6 Frankfurt/M. 90, Varrentrappstr. 40/42, Deutschland (BRD)

(Received 31 July 1975; accepted 12 November 1975)

The structure of the triclinic modification of WO_{3} in terms of the $\mathrm{O} \rightarrow \mathrm{W}$ electric dipoles is proposed. In the same way, based on the relationships with the structures of MoO_{3} and $\mathrm{WO}_{2} \mathrm{Cl}_{2}$, the structure of the orthorhombic modification of WO_{3} is proposed.

(a) Triclinic WO_{3}

Van Landuyt \& Amelinckx (1969) first showed that the model of electric dipoles for the long $\mathrm{O} \rightarrow \mathrm{W}$ bonds is used very successfully to explain the well known (100) domains in monoclinic WO_{3}. Schröder \& Hartman (1972) discussed the problem thoroughly, considering all existing chains of electric dipoles (along [100] and [001]). The result is that in the structure section d_{002} of the monoclinic unit cell both types of chains (two from each) are arranged corresponding to a minimum of repulsion that is mutually antiparallel. The second section d_{002} is (because there are two independent formula units in monoclinic WO_{3}) quasi-translational with respect to the first one. This leads to a total of two parallel [010] dipole chains on the common (002) face. This boundary repulsion is obviously low enough for the unit cell to exist while a total of four parallel dipole chains (two [010] and two [001]) at the (100) boundary leads to the (100) domain growth [cf. Fig. 5 in Schröder \& Hartman (1972)]. Schröder (1973) postulated the existence of another WO_{3} unit cell of nearly the same size, which is derived formally from the known form by rotation of the [010] chains (this means the WO_{3} octahedra) by 180° around the [001] dipole chain 'axis'. This unit cell is shown in Fig. 1 and is here attributed to one of the suggested low-temperature modifications of $\mathrm{WO}_{3}{ }^{\text {: }}$

Taking into account the very recent investigations on this subject [Salje, 1974; Salje \& Viswanathan, 1975; Salje, 1975, hereafter referred to as S. (1974), S. \& V. (1975) and S. (1975)] it is supposed that this derived unit cell is that of the triclinic structure, $\mathrm{WO}_{3}(\mathrm{II})$ according to $\mathrm{S} . \& \mathrm{~V}$. (1975). This is supported by the following points:
(1) Because of the lack of internal repulsion from parallel dipole chains, the volume of the derived unit cell should be smaller than that of the monoclinic unit cell. This has been confirmed: $421 \cdot 8$ (2) instead of $422 \cdot 8$ (2) \AA^{3} (S. \& V., 1975). The volume has been doubled for both cells since from experience of X-ray powder data of monoclinic WO_{3}. it is known that $C=c / 2$ is always obtained by this method.
(2) The derived triclinic cell would be space group $P 1$ which allows ferroelectric or antiferroelectric behaviour, observed several times, contrary to the known centrosymmetric monoclinic space group.
(3) The only noticeable difference between the lattice parameters of monoclinic and triclinic WO_{3} is found to be a contraction in b. It may be concluded that the short $\mathrm{W}-\mathrm{O}_{y}$ (π-bonding) distances are shortened from an average of $1.763 \AA$ to approach the $\mathrm{W}-\mathrm{O}_{\mathrm{z}}$ distances (av. $1.736 \AA$).

[^0]
(b) Orthorhombic WO_{3}

Schröder \& Felser (1972) described crystals of monoclinic WO_{3} showing (100) domains. The X-ray pattern showed reflexions $h k 0: k=2 n+1$ only, after long exposures of Weissenberg photographs. Later Schröder (1973), from this orthorhombic pseudosymmetry, concluded that the space group of the orthorhombic WO_{3} should be Pmnb (Standard: Pnma). The same result was obtained recently (S. \& V., 1975). This is the same space group shown by the usual orthorhombic structure of MoO_{3}, although this structure was solved in an alternative orientation, namely Pbnm [Last refinement Kihlborg (1963/4)]. From this information the structure of orthorhombic WO_{3} may be predicted and demonstrate the influence of dipole chains in systemizing the modifications of WO_{3}. Table 1 shows the hitherto measured lattice parameters of orthorhombic WO_{3}. The most recent values show satisfactory agreement. The lattice parameters of MoO_{3} according to Kihlborg (1963/4), in the orientation Pmnb are included in Table 1. It is seen that $2 a\left(\mathrm{MoO}_{3}\right)$ $\approx a$ (o'rh. WO_{3}), $b\left(\mathrm{MoO}_{3}\right) \sim 2 b$ (o'rh. WO_{3}) and $c\left(\mathrm{MoO}_{3}\right) \approx$ $c\left(\mathrm{WO}_{3}\right)$. While the agreements for a and c are satisfactory, there is a difference of $7 \cdot 570-6 \cdot 927-0.643 \AA$ in b.

Fig. 1. The proposed unit cell of triclinic WO_{3}. The described rotation has been carried out on the d_{002} section in the front of the figure.

Fig 2 shows the structure of orthorhombic WO_{3} by the usual idealized octahedra. The axes are given according to space group Pmon (a further alternative orientation of Pnma) by which the structure is described most conveniently. The structure of orthorhombic WO_{3} is obtained from that of MoO_{3} formally by translating every second double layer by $\pm a / 2\left(\mathrm{MoO}_{3}, P b n m\right)= \pm c / 2(P m n b)$. The resulting arrangement is one of almost c.c.p. of the O atoms. A certain extension along [010] $\left(\mathrm{MoO}_{3}\right)$ is expressed by the above calculated difference of $\sim 0.6 \AA$. In fact, the deviation is small as the ratio volume of the unit cell/number of O atoms shows: triclinic $\mathrm{WO}_{3} 17 \cdot 58$, monoclinic $\mathrm{WO}_{3} 17 \cdot 62$, orthorhombic $\mathrm{WO}_{3} 17 \cdot 75$, tetragonal $\mathrm{WO}_{3} 17 \cdot 98 \AA^{3}$. The value for MoO_{3} is $16.9 \AA^{3}$.

The most general among the fourfold equipoints in this space group No. $62-D_{2 h}^{16}$ is $4(c)$. If this is occupied by the atoms of WO_{3}, the W atoms should have coordinates close to $000,0 \frac{1}{2} 0, \frac{1}{2} 0 \frac{1}{2}, \frac{11}{2} \frac{1}{2}$ as can be concluded from Fig. 2. If

Fig. 2. The proposed structure of orthorhombic WO_{3} drawn as idealized octahedra. The crystal axes correspond to space group Pmcn.
the W atoms do have these coordinates exactly [which represent equipoint $4(a)$] greater differences in bond distances as compared with those in MoO_{3} must result. This is most likely so, as it is in accord with the differences in structural behaviour between Mo and W. How far pseudosymmetry in orthorhombic WO_{3} towards the space group Bbmm (standard Cmcm ; all atoms on mm), found in $\mathrm{Mo}_{4} \mathrm{O}_{10}(\mathrm{OH})_{2}$, will be realized, can be seen only by the structure determination. The lattice parameters of this compound are given also in Table 1. The structure of orthorhombic WO_{3} already contains the arrangement of two kryptocells of tetragonal $\mathrm{WO}_{3}($ Kehl, Hay \& Wahl, 1952).

The true arrangement of the electric dipole chains in orthorhombic WO_{3} can of course be elucidated only by the structure determination, but by analogy with MoO_{3}, so far no reasons for internal repulsions can be seen.

To a certain degree, the arrangement of dipole chains in orthorhombic WO_{3} can be predicted by comparison with those in $\mathrm{WO}_{2} \mathrm{Cl}_{2}$ (Jarchow, Schröder \& Schulz, 1968).* This structure also has W-O dipole chains in two directions, namely along [001] and [010] (space group B11b). The first ones are antiparallel (two per unit cell) while the second are parallel by translation. Structural equivalence of lattice directions between $\mathrm{WO}_{2} \mathrm{Cl}_{2}(A 11 a)$ and $\mathrm{WO}_{3}\left(P 2_{1} / n\right)$ has been shown (Schröder, 1973) to exist in the following way $[100] \triangleq[010]$ and $[010] \triangleq[001]$. If the setting $B 11 b$ is used, corresponding directions in $\mathrm{WO}_{2} \mathrm{Cl}_{2}, \mathrm{WO}_{3}\left(P 2_{1} / n\right)$ and WO_{3} ($P m n b$) are along equivalent lattice directions, neglecting the obliqueness of the $\mathrm{WO}_{2} \mathrm{Cl}_{2}$ cell and, because of the centring of this cell, taking only half its corresponding lattice parameter. From comparison with MoO_{3} (Pmnb) where we have dipoles along [010] and [001], we may assume that in orthorhombic WO_{3} (Pmnb) they are also along these directions.

* In the paper of Jarchow, Schröder \& Schulz (1968), the labelling of the atoms in Fig. 4 is incorrect. W(1) is linked to $\mathrm{Cl}(1), \mathrm{Cl}(2), \mathrm{O}(1), \mathrm{O}(2)$ with the coordinates given in Table 2 [except those for $\mathrm{Cl}(1)$ and $\mathrm{Cl}(2)$] and to two more symmetryrelated O atoms, labelled $O(3)$ and erroneóusly $O(2)$ in Fig. 4. The coordinates of Table 2 refer to the given orthorhombic cell. The transformation matrix applies only to the z values of the Cl atoms. The equivalent positions for $A 1 a 1$ are: x, y, z; $\frac{1}{2}+x, \bar{y}, z ; x, \frac{1}{2}+y, \frac{1}{2}+z ; \frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z ; c=14.41 \AA$.

Table 1. Lattice parameters (\AA) and space groups for $\mathrm{WO}_{3}, \mathrm{WO}_{2} \mathrm{Cl}_{2}, \mathrm{MoO}_{3}$ and $\mathrm{Mo}_{4} \mathrm{O}_{10}(\mathrm{OH})_{2}$

	a	b	c	Space group	Reference
WO_{3}^{*}	$7 \cdot 13$	$7 \cdot 33$	$3 \cdot 84$		(i)
$\mathrm{WO}_{3}\left(>350{ }^{\circ} \mathrm{C}\right)$	$7 \cdot 28$	$7 \cdot 45$	$3 \cdot 81$		(ii)
WO_{3}^{*}	7.339	$7 \cdot 545$	$3 \cdot 857$		(iii)
WO_{3}^{+}	7.336	$7 \cdot 560$	$3 \cdot 872$		(iv)
WO_{3}^{+}	7.356	$7 \cdot 583$	$3 \cdot 878$		(v)
WO_{3}^{*}	7.341 (4)	$7 \cdot 570$ (4)	3.877 (2)	Pmnb	(vi)
	$3 \cdot 877$	$7 \cdot 341$	$7 \cdot 570$	Pmen	
$\mathrm{WO}_{3}(\mathrm{RT})$	7.306 (1)	$7 \cdot 540$ (1)	$7 \cdot 692$ (1)	$P 21 / n$	(vii)
WO ${ }_{2} \mathrm{Cl}_{2}(\mathrm{RT})$	$7 \cdot 68$ (1)	3.89 (1)	14.41 (2)	Alal	(viii)
	$7 \cdot 20 \dagger$	$7 \cdot 68$	3.89	$B 11 b$	
$\mathrm{MoO}_{3}(\mathrm{RT})$	3.6964 (6)	13.855 (3)	$3 \cdot 9628$ (7)	Pmnb	(ix)
$\mathrm{Mo}_{4} \mathrm{O}_{10}(\mathrm{OH})_{2}(\mathrm{RT})$	3.734	$14 \cdot 082$	$3 \cdot 888$	Bbmm	(x)

References: (i) Ueda \& Ichinokawa (1951), (ii) Wyart \& Foex (1951), (iii) Rosen, Banks \& Post (1956), (iv) Perri, Banks \& Post (1957), (v) Ackermann \& Sorrell (1970), (vi) Salje \& Viswanathan (1975), (vii) Loopstra \& Rietveld (1969), (viii) Jarchow, Schröder \& Schulz (1968), (ix) Kihlborg (1963/64), (x) Wilhelmi (1969).

* Lattice parameters were taken from diagrams for $480^{\circ} \mathrm{C}$; \dagger the value is $14.41 / 2 \AA$, the original lattice parameter of $13 \cdot 90 \AA$ for the monoclinic cell is incorrect ($c f$. footnote on this page); RT: room temperature value.

Some comments on the papers S. (1974), S. \& V. (1975) and S. (1975) are given in the Appendix.*

Note added in proof: The most recently published results on the doubling of the c axis in monoclinic WO_{3} (Lefkowitz, Dowell \& Shieldt, 1975) confirm the equivalence of the lattice directions in $\mathrm{WO}_{2} \mathrm{Cl}_{2}$, monoclinic WO_{3} and orthorhombic WO_{3} given here, as well as earlier results (Schröder \& Felser, 1972).

References

Ackermann, R. J. \& Sorrell, C. A. (1970). High Temp. Sci. 2, 119-130.
Jarchow, O., Schröder, F. \& Schultz, H. (1968). 7. anorg. allgem. Chem. 363, 58-72.
Kehl, W. L., Hay, R. G. \& Wahl, D. (1952). J. Appl. Phys. 23, 212-215.
Kihlborg, L. (1963/4). Ark. Kem. 21, 357-364.

* The Appendix has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31508 (4 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

Lefkowitz, I, Dowell, M. B. \& Shields, M. B. (1975). J. Solid State Chem. 15, 24-39.

Perri, J. A., Banks, E. \& Post, B. (1957). J. Appl. Phys. 28, 1272-1275.
Rosen, C., Banks, E. \& Post, B. (1956). Acta Cryst. 9, 475-477.
Salje, E. (1974). J. Appl. Cryst. 7, 615-617.
Salje, E. (1975). Acta Cryst. A31, 360-363.
Salje, E. \& Viswanathan, K. (1975). Acta Cryst. A31, 356-359.
Schröder, F. A. (1973). Habilitationsschrift, Freiburg i. Br., p. 40ff.
Schröder, F. A. \& Felser, H. (1972). Z. Kristallogr. 135, 391-398.
Schröder, F. A. \& Hartman, P. (1972). Z. Naturforsch. 27b, 902-908.
Ueda, R. \& Ichinokawa, T. (1951). J. Phys. Soc. Japan 6, 122-123.
Van Landuyt, J. \& Amelinckx S. (1969). Cryst. Lattice Defects, 1, 113-116.
Wilhelmi, K. A. (1969). Acta Chem. Scand. 23, 419428.

Wyart, J. \& Foex, M. (1951). C.R. Acad. Sci. Payis 233, 2459-2461.

Acta Cryst. (1976). A32, 344

The residual in the case of a mixture of centric and acentric reflexions. By P. E. Nixon*, Laboratory of Molecular Biophysics, South Parks Road, Oxford OX1 3PS, England
(Received 10 September 1975; accepted 22 September 1975)

Abstract

The value of the residual for a randomly wrong structure when calculated from a mixture of centrosymmetrical and non-centrosymmetrical structure factors is close to the value obtained by interpolation between the centric and acentric cases of Wilson [Acta Cryst. (1950). 3, 397-398].

Wilsòn (1950) pointed out that it was useful to know the likely value of the crystallographic residual for a randomly wrong structure, and he showed that this was $2 / 2-2$ if the Wilson (1949) centric distribution function applies, and $2-\sqrt{2}$ if his acentric distribution function applies. In noncentrosymmetrical space groups other than $P 1$, one has both centrosymmetrical and non-centrosymmetrical structure factors, and usually calculates the residual without separation of the structure factors into two sets.

From equations (1) and (5) of Wilson's 1950 paper

$$
R_{\mathrm{random}}=\frac{2\langle F\rangle-4\langle G(F)\rangle}{\langle F\rangle}
$$

where

$$
G(F)=\int_{0}^{F} F^{\prime} P\left(F^{\prime}\right) \mathrm{d} F^{\prime}
$$

If a proportion c of the structure factors belongs to the centric distribution, and $(1-c)$ to the acentric,

$$
\begin{align*}
& \quad R_{\text {random }} \\
& \quad=-\frac{2 c\langle F\rangle_{C}+2(1-c)\langle F\rangle_{A}-4 c\langle G\rangle_{C}-4(1-c)\langle G\rangle_{A}}{c\langle F\rangle_{C}+(1-c)\langle F\rangle_{A}} \tag{1}\\
& \text { * Present address: Department of Chemistry, University of } \\
& \text { Auckland, Auckland, New Zealand. }
\end{align*}
$$

where the subscripts C and A refer to the centric and acentric distributions used to average F and G. Values of these averages are given by Wilson (1950): substitution in (1) gives

$$
\begin{equation*}
R_{\mathrm{random}}=\frac{(4-2 V 2) c+\pi(1-V 2 / 2)}{\sqrt{2} 2 c+\frac{\pi}{2}(1-c)} \tag{2}
\end{equation*}
$$

which reduces to Wilson's equations (8) and (10) when $c=1$ and 0 respectively. A straight line interpolation between the limiting values is given by

$$
\begin{align*}
R_{\text {random }} & \approx 2-V 2+(3 \sqrt{ } 2-4) c \\
& \approx 0.59+0.24 c . \tag{3}
\end{align*}
$$

Use of (3) rather than the more exact (2) involves an error never greater than 0.006 .

I am grateful to the Medical Research Council, London, for a scholarship in training in research methods.

References

Wilson, A. J. C. (1949). Acta Cryst. 2, 318-321.
Wilson, A. J. C. (1950). Acta Cryst. 3, 397-398.

[^0]: * For part XVII see Z. Naturforsch. (1975). B30, 638.

